Nickel-based super alloy: Hastelloy G30 (UNS N06030)

What is Hastelloy G30?

Hastelloy G-30 is designated as UNS N06030 or DIN 2.4603. It is a nickel-chromium-iron material with excellent resistance to phosphoric acid environment (wet process). Hastelloy G30 is a nickel-based high-temperature alloy composed of nickel, chromium, cobalt, tungsten and other elements, with a nickel content of about 37%. It is also moderately resistant to local corrosion caused by chlorides, which may be a problem under the deposits in the evaporator used to concentrate phosphoric acid. In addition, compared with stainless steel, G-30 alloy is less susceptible to stress corrosion cracking caused by chloride. Hastelloy G30 is a nickel-based alloy with a high chromium content. It is better than most other nickel-based and iron-based alloys for commercial phosphoric acid and mixed environments of many highly oxidizing acid media such as nitric acid/hydrochloric acid, nitric acid/hydrofluoric acid and sulfuric acid. The alloy has better corrosion resistance. Hastelloy G-30 is widely used in phosphoric acid, sulfuric acid and nitric acid processing industries, nuclear pipeline, petrochemical and fertilizer industries. G30 alloy can prevent the formation of grain boundary precipitation in the welding heat-affected zone, so its welded products are suitable for various chemical treatment projects. Hastelloy G-30 (UNS N06230) is an improved version of Ni-Cr-Fe-Mo-Cu alloy G-3. G-30 has a high content of chromium, cobalt and tungsten, and its corrosion resistance is better than most other nickel and iron-based alloys in commercial phosphoric acid and complex environments containing high oxidizing acids. The alloy’s resistance to the formation of grain boundary precipitates in the heat-affected zone makes it suitable for most chemical process applications under welding conditions.

1 1F4101351154X - Nickel-based super alloy: Hastelloy G30 (UNS N06030)

Hastelloy G30 Weld Neck Flanges

Production process of Hastelloy G30 alloy:

  • 1. Hot rolled forming;
  • 2. Hot extrusion molding.

G30 alloy has poor high-temperature plasticity, narrow hot forming temperature range, and greater resistance to deformation. Therefore, the production of Hastelloy G30 alloy pipes is mainly formed by hot extrusion. The thermal deformation of the blank in the extrusion cylinder is a key technology in hot extrusion molding, and it is also a bottleneck in the production of G-30 alloy pipes.

Types of Hastelloy

  • Hastelloy B-3 nickel molybdenum alloy has excellent corrosion resistance in reducing environment
  • The upgraded version of Hastelloy B-3: B-3 has excellent corrosion resistance to hydrochloric acid at any temperature and concentration
  • Hastelloy C-4: good thermal stability, good toughness and corrosion resistance at 650-1040 ℃
  • Hastelloy C-22: has better uniform corrosion resistance than C-4 and C-276 in oxidizing medium and excellent local corrosion resistance
  • Hastelloy C-276: good resistance to oxidizing and moderate reducing corrosion, excellent resistance to stress corrosion
  • Hastelloy C-2000: the most comprehensive corrosion resistant alloy with excellent uniform corrosion resistance in oxidation and reduction environments
  • Hastelloy G-35: the upgraded product of G-30 has better corrosion resistance and thermal stability, and has excellent performance in phosphoric acid and other strong oxidizing mixed acid media with high chromium content
  • Hastelloy X: combined with the characteristics of high strength, oxidation resistance and easy processing, each of the above grades has its own specific chemical composition, mechanical properties and strong points, so we can’t generalize the characteristics of Hastelloy.

Hastelloy alloy is mainly divided into three series B, C and G. it is mainly used in iron-based Cr Ni or Cr Ni Mo stainless steel, non-metallic materials and other occasions with strong corrosive medium.
In order to improve the corrosion resistance and cold and hot working properties of Hastelloy, three major improvements have been made to Hastelloy:

  • Series B: B → B-3 (00ni70mo28) → B-3
  • Series C: C → C-276 (00cr16mo16w4) → C-4 (00cr16mo16) → C-22 (00cr22mo13w3) → C-2000 (00cr20mo16)
  • G Series: G → G-3 (00cr22ni48mo7cu) → G-30 (00cr30ni48mo7cu)
  • The most widely used materials are N06030 (B-3), N10276 (C-276), N06030 (C-22), N06455 (C-4) and N06030 (G-3)

Equivalent Grades of Hastelloy G30 (UNS N06030)

Trademarks GB JIS KS ASTM UNS DIN W.Nr GOST BS NF
Hastelloy G-30 Hastelloy G-30 N06030 NiCr30FeMo 2.4603

Chemical Composition of Hastelloy G30 (UNS N06030)

C P S Mn Si Cr Ni Co Mo W Nb+Ta Cu Fe
≤0.03 ≤0.04 ≤0.02 ≤1.50 ≤0.80 28.00~31.50 Bal ≤5.00 4.00~6.00 1.50~4.00 0.30~1.50 1.00~2.40 13.00~17.00

Physical Properties of Hastelloy G30 (UNS N06030)

Density Electrical Resistivity Thermal Conductivity Melting Point
lb/in3 g/cm3 µohm.in µohm.m btu.in/h.ft2.°F W/m.°C °C °F
0.297 8.22 45.7 1.16 69 10 1371 2500

Mechanical Properties of Hastelloy G30 (UNS N06030)

Density, g/cm3 Melting Point, ℃ Tensile Strength, MPa Yield Strength, MPa Elongation,%
8.22 1332~1361 689 324 56


Annealing of Hastelloy G30 (UNS N06030)

  • Anneal at 2150 F followed by water quench or rapid air cooling.

Forging of Hastelloy G30 (UNS N06030)

  • No data. However the alloy has good ductility and thus is capable of being forged.

Cold Working of Hastelloy G30 (UNS N06030)

Cold forming may be done using standard tooling although plain carbon tool steels are not recommended for forming as they tend to produce galling. Soft die materials (bronze, zinc alloys, etc.) minimize galling and produce good finishes, but die life is somewhat short. For long production runs the alloy tool steels ( D-2, D-3) and high-speed steels (T-1, M-2, M-10) give good results especially if hard chromium plated to reduce galling. Tooling should be such as to allow for liberal clearances and radii. Heavy duty lubricants should be used to minimize galling in all forming operations. Bending of sheet or plate through 180 degrees is generally limited to a bend radius of 1 T for material up to 1/8″ thick and 2 T for material thicker than 1/8″. In order to avoid “orange peel” surface effect the cold work reduction of area should be greater than 15% at any given operation. Intermediate annealing may be done, to restore ductility, during the sequence of cold forming operations.

Machinability of Hastelloy G30 (UNS N06030)

Conventional machining techniques used for iron based alloys may be used. Machining characteristics are somewhat similar to those for the austenitic (300 Series) stainless steels. This alloy does work-harden during machining and has higher strength and “gumminess” not typical of steels. Heavy duty machining equipment and tooling should be used to minimize chatter or work-hardening of the alloy ahead of the cutting. Water-base coolants of premium quality are preferred. Rigid mounting of tooling and the workpiece are important to avoid “chatter” (work hardening ahead of the cut). Both carbide tools and high-speed tools may be used successfully. Carbide tooling generally permits twice, or better, the feed rate of high-speed tooling for the same depth of cut or drilling. Turning: For roughing cuts the tools should have -5 degree back rake for carbide and -10 degree back rake for high-speed steel. Normal and/or finish turning call for positive rake angles of about +10 degrees for both carbide and hig-speed cutters. Cutting speeds and feeds are in the following ranges: For High-Speed Steel Tools For Carbide Tooling Depth Surface Feed Depth Surface Feed of cut speed in inches of cut speed in inches inches feet/min. per rev. inches feet/min. per rev. 0.040″ 0.040″ 0.250″ 0.250″ Drilling: Steady feed rates must be used to avoid work hardening due to dwelling of the drill on the metal. Rigid set-ups are essential with as short a stub drill as feasible. Conventional high-speed steel drills work well. Feeds vary from 0.001 inch per rev. for holes of less than 1/16″ diameter, 0.002 to 0.003 inch per rev. for 1/4″ dia., 0.004 to 0.010 inch per rev. for holes of 7/8″diameter. Speeds of 10 to 25 surface feet/minute, are best for drilling. Milling: To obtain good accuracy and a smooth finish it is essential to have rigid machines and fixtures and sharp cutting tools. High-speed steel cutters such as M-2 or M-10 work best with cutting speeds of 30 to 50 surface feet per minute and feed of 0.002-0.007 inch per cutting tooth. Grinding: The alloy should be wet ground and aluminum oxide wheels or belts are preferred.

Welding of Hastelloy G30 (UNS N06030)

The commonly used welding methods work well with this alloy. Matching alloy filler metal should be used. If matching alloy is not available then the nearest alloy richer in the essential chemistry (Ni, Co, Cr, Mo) should be used. All weld beads should be slightly convex. It is not necessary to use preheating. Complete removal of slag is important after every weld pass and upon completion of welding. Usually this is accomplished by use of a wire brush (hand or powered). Surfaces to be welded must be clean and free from oil, paint or crayon marking. The cleaned area should extend at least 2″ beyond either side of a welded joint. Gas Tungsten Arc Welding (TIG): DC straight polarity (electrode negative) is recommended. Keep as short an arc length as possible and use care to keep the hot end of filler metal always within the protective atmosphere. Arc voltage should be in the range of 9 to 13 volts with current of 20-60 amps for thin material, 60-150 amps for material 1/8″ thick or so, and 100-150 amps for material 1/4″ thick. Shielded Metal-Arc Welding (SMAW): Electrodes should be kept in dry storage and if moisture has been picked up the electrodes should be baked at 600 F for one hour to insure dryness. Use electrode positive polarity. Current settings vary from 60 amps for 3/32″ dia. rods up to 180 amps for 3/16″ dia. rods. It is best to weave the electrode slightly as this alloy weld metal does not tend to spread. Metal-Arc Welding (MIG): Electrode positive polarity should be used and best results are obtained with the welding gun at 90 degrees to the joint. For Short-Circuiting-Transfer GMAW a typical voltage is 18-22 with a current of 75-150 amps and a wire feed of 8-10 inches per minute. Submerged-Arc Welding: Generally submerged-arc welding should be avoided. This weld process involves high heat input and may lead to cracking of the alloy workpiece.

Heat treatment of Hastelloy G30 (UNS N06030)

  • The alloy may be annealed. Also it is important to solution-anneal after hot forming so as to restore corrosion resistance of the alloy.

Hardening of Hastelloy G30 (UNS N06030)

  • Hardens due to cold working only.

ASTM Specifications

Product Form Standard
Sheet, Plate & Strip ASTM B582
Billet, Rod & Bar ASTM B581, B472
Seamless Pipe & Tube ASTM B622
Welded Pipe & Tube ASTM B619, B626
Fittings ASTM B366, B462
Forgings ASTM B462

*The mechanical properties vary according to different forms and heat treatment conditions.

Application areas of nickel-based alloy Hastelloy G30 (UNS N06030):

G series nickel-based alloys (G3, G30, G35) are mainly used in the petrochemical industry such as oil well pipes, evaporators used in the production of wet phosphoric acid, nuclear fuel regeneration equipment in the nuclear industry, and pickling equipment in steel plants. C series alloys (C276, C22, C4) are one of the most used corrosion-resistant alloys, and they have good corrosion resistance in oxidizing or reducing environments. Therefore, it is widely used in various places with complex corrosive environments, such as the nuclear industry and the pharmaceutical industry. Alloy 690 is a very important nuclear material. It is an irreplaceable material for the steam pipe of nuclear power generation in nuclear power plants. It is a core component and has good resistance to stress corrosion cracking.
When drilling for oil and natural gas, in addition to drilling machinery and equipment, special pipes are also needed, namely drill strings, casings, tubing, etc., collectively referred to as “oil well pipes.” Oil well pipe accounts for about 40% of the total steel used in the oil and gas industry, and is an important part of oil and natural gas exploitation. According to the particularity of China’s oil and gas production environment, experts believe that ultra-high-strength tubing, high-strength tubing, tubing resistant to corrosion in acid environments, and special threaded tubing are high-performance tubing that China urgently needs today and in the future.
For a long time, China’s oil well pipe materials have mainly been 13Cr, 22Cr, 25Cr, 316 stainless steel and so on. These stainless steels have high strength and high Cr content. A dense cr2o3 passivation film is easily formed on the surface of the alloy, which can effectively resist the corrosion of CO, and with the increase of Cr content, it is resistant to CO2 corrosion. The ability to gradually increase oil. However, with the gradual discovery and exploitation of deeply buried high-acid oil and gas fields, the content of H2S, CO2, S, and C1 in the mining environment is high, and the commonly used stainless steel pipes can no longer meet the mining needs. Therefore, highly alloyed nickel-based corrosion-resistant alloys (600, 825, G-3, 2550, 050, 625, C276) are gradually used in oil well pipes. G3 alloy is a nickel-based corrosion-resistant alloy with superior performance. The Ni-Cr-Fe system containing Mo and Cu has excellent resistance to oxidation, atmospheric corrosion and stress corrosion cracking. Due to the high content of Fe in the alloy, it has the characteristics of low cost compared to other nickel-based corrosion resistant alloys. The oil well pipe made of this alloy has excellent resistance to H2S, CO2, and Cl corrosion, and is the best choice for oil well pipe in sour gas fields. With the gradual development of sour oil and gas fields, the demand for nickel-based alloy oil well pipes continues to rise. Related products have not been fully mastered by a few foreign manufacturers of nickel-based corrosion-resistant alloy pipe manufacturing technology, which seriously threatens the country’s energy security. Therefore, it is imperative to localize nickel-based alloy pipes.

hastelloy g30 smls pipes and bars - Nickel-based super alloy: Hastelloy G30 (UNS N06030)

ASTM B622 Hastelloy G30 seamless pipes

Hastelloy G30 is widely used in phosphoric acid equipment, sulfuric acid equipment, nitric acid equipment, nuclear fuel reprocessing, nuclear waste treatment, pickling operations, petrochemical products, fertilizer production, pesticide production, and gold mining extraction. Hastelloy G30 has excellent resistance to hydrofluoric acid/nitric acid mixtures used in applications such as stainless steel pickling. Compared with other nickel-based or iron-based alloys, Hastelloy G30 has excellent performance in commercial phosphoric acid Better resistance. Its application as an acid evaporator in the fertilizer industry is increasing day by day.
Comparison of corrosion resistance in commercial phosphoric acid: The corrosion resistance of Hastelloy G30 and G alloy and 625 alloy in commercial phosphoric acid is as follows. The corrosivity of commercial phosphoric acid is determined by many factors, including concentration and temperature. , Impurities and phosphate ore origin, etc. The corrosion rate of phosphoric acid of the same concentration made from different phosphate mineral sources may vary greatly. Therefore, the corrosion test is measured in different sources of phosphoric acid, and the corrosion resistance of G-30 alloy is expressed as a function of the corrosion rate of G alloy and 625 alloy, respectively. In the same acid with a corrosion rate of 0.025-2.5mm, the corrosion resistance of G-30 alloy is usually 2-10 times stronger than that of G alloy and 265 alloy. Some of the more common uses of Hastelloy G30 include:

  • Wire wound resistors.
  • Bimetal contacts.
  • Electric and electronic applications.
  • Marine engineering.
  • Chemical and hydrocarbon processing equipment.
  • Gasoline and freshwater tanks.
  • Crude petroleum stills.
  • De-aerating heaters.
  • Boiler feed water heaters and other heat exchangers.
  • Pumps, shafts and fasteners.
  • Industrial heat exchangers.
  • Chlorinated solvents.
  • Crude oil distillation towers.
  • Meter and valve parts.
  • Screw machine products.
  • Oil refinery piping.
  • Heat exchangers.
  • Nuclear fuel production.
  • Generator tubing.
  • High temperature heating coils.
  • Crude oil transfer piping.
  • Propeller and pump shafts.
  • Piping system.
  • Heat exchange tubes.
  • Pipe fittings.
  • Flanges.
  • Valves.

Variety specifications and supply status of Nickel-based super alloy: Hastelloy G30 (UNS N06030):

Variety classification:

Yaang Pipe Industry can produce various specifications of Hastelloy G30 seamless pipeHastelloy G30 steel plateHastelloy G30 round bar, Hastelloy G30 forgings, Hastelloy G30 flangeHastelloy G30 pipe fittings, Hastelloy G30 welded pipe, Hastelloy G30 steel strip, Hastelloy G30 wire and supporting welding materials. 

Delivery status:

  • Seamless pipe: solid solution + acid white, length can be set;
  • Plate: solid solution, pickling, trimming;
  • Welded pipe: solid solution acid white + RT% flaw detection;
  • Forging: annealing + car polish; Bars are forged and rolled, surface polished or car polished;
  • Strips are delivered after cold rolling, solid solution soft state, and deoxidized;
  • Wire rods are finely ground in solid solution pickled disk or straight strips, solid solution straight strips Delivery in light state.

Source: China Hastelloy G30 Flanges Manufcturer – Yaang Pipe Industry (www.steeljrv.com)

(Yaang Pipe Industry is a leading manufacturer and supplier of nickel alloy and stainless steel products, including Super Duplex Stainless Steel Flanges, Stainless Steel Flanges, Stainless Steel Pipe Fittings, Stainless Steel Pipe. Yaang products are widely used in Shipbuilding, Nuclear power, Marine engineering, Petroleum, Chemical, Mining, Sewage treatment, Natural gas and Pressure vessels and other industries.)

If you want to have more information about the article or you want to share your opinion with us, contact us at sales@steeljrv.com

Please notice that you might be interested in the other technical articles we’ve published:

Summary
nickel based super alloy hastelloy g3 uns n06985 - Nickel-based super alloy: Hastelloy G30 (UNS N06030)
Article Name
Nickel-based super alloy: Hastelloy G30 (UNS N06030)
Description
Hastelloy G-30 is designated as UNS N06030 or DIN 2.4603. Hastelloy G30 is a nickel-based high-temperature alloy composed of nickel, chromium, cobalt, tungsten and other elements, with a nickel content of about 37%.
Author
Publisher Name
www.steeljrv.com
Publisher Logo

Related News

  • * 暂无相关文章
العربيةБългарски简体中文繁體中文DanskNederlandsEnglishFrançaisDeutschBahasa IndonesiaItaliano日本語한국어LatinPortuguêsРусскийEspañolதமிழ்ไทยTürkçe